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Abstract 
 
 We investigated the possibility that Logistic 
Regression Functions (LRFs), when used in combination 
with Boolean Discriminant Functions (BDFs), which we 
had previously developed, would improve the quality 
classification ability of BDFs when used alone. This was 
the case; when the union of  a BDF and LRF was used to 
classify quality, the predicative accuracy of quality and 
inspection cost was improved over that of using either 
function alone for the Space Shuttle. Also, the LRFs 
proved useful for ranking the quality of modules in a 
build. The significance of these results is that very high 
quality classification accuracy (1.25% error) can be 
obtained while reducing the inspection cost incurred in 
achieving high quality. This is particularly important for 
safety critical systems. Because the methods are general 
and not particular to the Shuttle, they could be applied to 
other domains. A key part of the LRF development was a 
method for identifying the critical value (i.e. threshold) 
that could discriminate between high and low quality and 
at the same time constrain the cost of inspection to a 
reasonable value.  
 
Key Words: Software quality prediction, Logistic 
Regression Functions, Boolean Discriminant Functions.  
 
1. Introduction 
 
 Over the past several years we have developed various 
metrics models, including Boolean Discriminant 
Functions (BDFs) for classifying quality; Kolmogorov-
Smirnov distance (K-S test) for estimating metric critical 
values; various derivative calculations for assessing the 
quality that could be achieved with various levels of 
quality control and inspection; stopping rules for deciding 
how many metrics to use in a discriminate function; point 
and confidence interval estimates of quality [SCH00]; 
Relative Critical Value Deviation metrics for indexing  

 
 
quality; and non-linear regression functions for predicting 
quality [SCH99]. We have focused this research on the 
Space Shuttle for which we have a large amount of data. 
 

Now we turn our attention to investigate how logistic 
regression would compare to our previous methods in 
classifying quality. Although other researchers have 
applied logistic regression to classifying quality, our 
contributions are the following: 
 
1) Developed a method to determine the critical values of 
the Logistic Regression Functions (LRFs) for classifying 
software quality, using the inverse of the Kolmogorov-
Smirnov (K-S) distance; 
 
2) Compared the Discriminative Power of LRFs with 
BDFs; 
 
3) Investigated whether LRFs in combination with BDFs 
would provide better quality discrimination than either 
one used alone;  
 
4) Investigated the ability of LRFs to rank quality; and 
 
5) Performed 1 – 4 on a safety critical system: the Shuttle. 

 
We were motivated to do this research for the 

following reasons – each reason associated with a 
research question:  
 
1) BDFs provide excellent ability to classify low quality 
modules. However, this result is achieved at a relatively 
high cost of inspection, where this cost is incurred 
because modules that are predicted to be fault prone are 
inspected (see section 4.). Thus, the first research question 
was: What misclassification and inspection rates could be 
obtained by using logistic regression?  
 
2) The purpose of BDFs is to provide criteria for deciding 
whether a module is fault prone or not fault prone; BDFs, 
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as discrete functions, do not provide information about 
the degree to which individual modules are fault prone. 
BDFs only provide the degree of software quality for 
entire software systems that consist of a set of modules. In 
the case of the Shuttle, these are Operational Increments 
(OIs). Using the BDF approach, we can compare the 
quality of software across OIs. Thus, the second research 
question was: Given that LRFs are the logit of the 
probability of the occurrence of discrepancy reports 
(DRs) (reports of deviations between requirements and 
implementation) on modules as a linear function of key 
metrics, and thus a continuous function, would the LRFs 
provide additional information about the quality of 
individual modules? See sections 3.2 and 3.3 for details 
on how BDFs and LRFs are constructed, respectively. 
 
3) In addition to the potential ability of LRFs to 
discriminate quality, we also wanted to investigate their 
ability to rank quality. Thus, the third research question 
was: Would the array of  the number of discrepancy 
reports written against module i (drcount) rank in 
approximately the same order as the array of  Pi or logit 
(Pi), where Pi is the probability of  drcount>0? 
 
 This paper is organized as follows: review related 
research; provide an overview of the analysis approach; 
compare the Discriminative Power of LRFs with BDFs; 
evaluate the ability of LRFs to rank quality; and conclude 
with answers to the research questions posed above. 
 
2. Related Research 
  
 Many models and methods have been employed to 
classify the quality of software. We briefly describe a 
selected few that are most related to our research. In two 
related studies, Briand et al. used logistic regression to 
assess the probability of a fault in a class as a function of 
various object-oriented design measures [BRI98, 
BRI198]. In a similar vein, Tang et al. used logistic 
regression to investigate the association between object-
oriented metrics and fault prone classes [TAN99]. In 
another example of logistic regression, Khoshgoftaar and 
Allen used it to classify modules as fault-prone or not 
fault-prone as a function of faults, requirements, 
performance, documentation, and software trouble report 
metrics [KHO97]. They developed a decision rule for 
deciding whether a module was fault prone based on the 
costs of misclassification. Khoshgoftaar and Allen also 
used percentile ranking of quality factors to determine 
thresholds for identifying the highest priority modules 
(i.e., the “most fault prone” modules) [KHO98]. This 
approach has the same objective as our quality ranking 
method (to be described) except that we use Pi derived 
from logistic regression to rank order drcount. Ohlsson 
and Wohlin used historical fault distributions and changes 

in principal components between releases to classify 
software fault proneness into one of three categories: 
“red”, yellow”, and “green” [OHL98]. This classification 
is used to indicate the difficulty of maintaining the 
software.  In another approach to classification, Ohlsson 
and Alberg used Alberg Diagrams to predict percentage 
of faults as a function of percentage of modules by 
ordering modules in decreasing order of faults and noting 
the cumulative number of faults corresponding to various 
percentages of modules [OHL96]. All of these approaches 
have a common objective with ours: identify fault prone 
software. Our work differs in three ways: 1) we 
investigated whether BDFs in combination with LRFs  
would improve quality classification of either used alone; 
2) we derived a new quality discriminant  -- critical values 
(thresholds) of Pi that are used to classify quality; and 3) 
we evaluated the quality ranking ability of LRFs. 
  
3. Analysis 
  
 Now we evaluate the ability of BDFs and LRFs to 
classify quality, along with the cost of inspection that 
would be incurred in achieving this quality. We used an 
incremental approach to adding metrics to the BDFs and 
LRFs, as described below [SCH00]. This is accomplished 
in two activities: validation and application. Validation is 
an activity that is required in order to identify metrics that 
can predict low quality software that will require 
corrective action during application. Application is an 
activity during which validated metrics are applied to 
control software quality. During validation, we used 
Build 1, comprised of 1397 modules (576 with 
drcount>0, 41.23%), as the source of both drcount and 
metrics data to compute metrics discriminant functions 
retrospectively (i.e., after both drcount and metrics data 
were available). During application, we used these 
discriminant functions and the metrics data from Build 2, 
comprised of 846 modules (418 with drcount>0, 49.41%), 
to control the quality of this build in real time prior to the 
availability of drcount data. In order to not bias the 
results, Build 2 is neither a descendant of nor 
chronologically follows Build 1. We then compare the 
ability of the BDFs and LRFs to classify quality and the 
inspection cost that would be incurred by the two 
methods.  
 

These discriminant functions provide a cost effective 
way of ensuring product quality compared with one 
hundred percent manual inspection because with the 
former, the expected quality and associated inspection 
cost can be quantified, and only those modules that are 
predicted to be fault prone are subjected to formal manual 
inspection. Complete manual inspection is infeasible on 
large systems and is itself fault prone due to the tedium 
and fatigue that accompanies such an effort. In contrast, 



  

our approach provides automated data collection and 
computation of module metrics, using a metrics analyzer, 
and the derivation of discrimant functions, using 
spreadsheet and statistical tools.  Using this approach, the 
desired quality and the cost of achieving it can be 
specified in advance and the metrics set and their critical 
values selected to achieve those objectives. 
3.1 Incremental Addition of Metrics to 
Discriminant Functions 
 
 We showed in [SCH00] that it is important to perform 
a marginal analysis (i.e., identification of the incremental  
contribution of each metric to improving quality) when 
making a decision about how many metrics to include in 
the discriminant function. If many metrics are added to 
the set at once, the contribution of individual metrics is 
obscured. Also, the marginal analysis provides an 
effective rule for deciding when to stop adding metrics. 
We also showed that certain metrics are dominant in their 
effects on classifying quality (i.e., dominant metrics make 
fewer mistakes in classifying quality than non-dominant 
ones) and that additional metrics are not needed to 
accurately classify quality. That is, a point is reached in 
adding metrics where Discriminative Power is not 
increased because: 1) the contribution of the dominant 
metrics in correctly classifying quality has already taken 
effect and 2) additional metrics essentially replicate the 
classification results of the dominant metrics -- the 
concordance effect. This result is due to the property of 
the BDF, when used as an OR function, which will cause 
a module to be rejected if only one of the module's 
metrics exceeds its critical value. Related to the property 
of dominance is the property of concordance: the degree 
to which a set of metrics produces the same result in 
classifying software quality as metrics are added to the 
set. A high value of concordance implies that additional 
metrics will not make a significant contribution to 
accurately classifying quality; hence, these metrics are 
redundant.  
 
 In [SCH100], we developed six BDFs, comprised of 
one to six metrics in order to evaluate the properties of the 
BDFs over a range of metrics. As each metric was added 
to the BDF for Build 1, during the validation activity, we 
noted when the ratio of relative incremental quality to 
relative incremental inspection (IQIR) reached a 
maximum. This occurred at three metrics. Adding a fourth 
metric did not increase the IQIR, although quality 
continued to increase until the fifth metric was added. On 
Build 2, we found that the maximum IQIR also occurred 
at three metrics during the application activity. However, 
in analyzing the LRFs, the criteria of association and 
model fit were used. The application of these criteria 
resulted in LRFs with four metrics and  six metrics, 

respectively. Thus for results to be comparable, we used 
four and six metric BDFs and LRFs.  
 
3.2 Boolean Discriminant Functions 
 
 BDFs for OIs are formed by entering module metrics 
into a Boolean expression in priority order, where the 
priority is determined by the metrics’ K-S maximum 
distance rank. The maximum distance is equal to the 
maximum difference between two cumulative distribution 
functions (CDFs), where the CDFs are distributions of 
metric values for non-fault prone and fault prone 
modules. The metrics’ critical values are obtained from 
the inverse of the K-S maximum distance. This is the 
value of a metric that corresponds to the maximum 
distance. A BDF is a Boolean function consisting of AND 
and OR operators, module metric values Mij, and metric 
critical values MCj that is used to classify modules as 
either accepted or rejected for module i and metric j. 
When the following BDF evaluates to true, modules are 
accepted: 
(Mi1≤MC1)… �(Mij≤MCj)…�(Mim≤MCm) 
 
When the following BDF evaluates to true, modules are 
rejected: 
(Mi1>MC1)…� (Mij>MCj)… � (Mim>MCm) 
 
With the addition of quality factor values (Fi) and quality 
factor critical value FC, as shown in equation (1), we 
obtain module counts that are used to classify modules 
into one of four categories, as defined below. 
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for j=1,...,m, and where COUNT(i)=COUNT(i-1)+1 FOR 
Boolean expression true and COUNT(i)=COUNT(i-1), 
otherwise; COUNT(0)=0. In our examples, Fi is drcount 
and FC=0. 
 
These counts have the following interpretations: 
 
C11 = The count of modules in the build that are high 
quality and no metric value exceeds its critical value. 
 
C12 = The count of modules in the build that are high 
quality and one or more metric values exceed its critical 
value. 
 



  

C21 = The count of modules in the build that are low 
quality and no metric value exceeds its critical value. 
 
C22 = The count of modules in the build that are low 
quality and one or more metric values exceed its critical 
value. 
 
The counts C11 and C22 are correct classifications and the 
counts C12 and C21 are misclassifications. These counts 
are inputs to the remaining computations. Metric critical 
values provide a threshold between two levels (e.g., high 
and low) of the quality of the software [SCH00]. The 
critical values derived from applying the K-S method are 
shown in Table 1. Metrics were entered incrementally in 
the BDFs in the sequence given by the K-S ranks in Table 
1. 
 
3.3 Logistic Regression Functions 
 
 Logistic regression is based on the concept of the 
success probability Pi of a binary event (e.g., the 
probability  of drcount>0 on module i). The odds of such 
an event are defined as the probability of success divided 
by the probability of failure, or Pi/(1- Pi). A logarithmic 
transformation is applied to this quantity to produce 
Logit(Pi) (see equation (2)). This transformation maps Pi 

from the range (0,1) to the range (-∞,∞): an 
unconstrained continuous range. Logit(Pi) is than modeled 
as a linear function of independent variables (e.g., Mij), as 
in equation (2) [COL91]. We formulated the logistic 
regression equations as the logit of the probability of the 
occurrence of discrepancy reports on a module as a linear 
function of several metrics. The following is the equation 
obtained from binary logistic regression that predicts the 
probability Pi of drcount>0 on module i, using four 
metrics: 
 
Logit(Pi) = log [Pi/(1- Pi)] = 
(-1.813)+(0.012225*C)+(0.012381*S)-(0.00148*E2)-
(0.0034733*L)             (2) 
 
Binary logistic regression fits a model with one or more 
predictors using an iterative-reweighted least squares 
algorithm to obtain maximum likelihood estimates of the 
model parameters [Col91]. Equation (2) was formulated 
based on the number of metrics that had the maximum 
association of 87.2% (i.e., the maximum association 
between the predicted and actual data). Metrics were 
entered in equation (2) in  the sequence given by the K-S 
ranks in Table 1.  
 
 The following is the equation obtained from binary 
logistic regression that predicts the probability of DRs>0 
on module i, using six metrics: 

Logit(Pi)= 
(-2.7003)+(0.010344*C)+(0.002841*S)+(0.00048E2*)-
(0.0020148*L)+(0.06908*E1)+(0.002876*N)           (3) 
 
As in equation (2), metrics were entered in equation (3) in 
the sequence given by the K-S ranks in Table 1. This 
equation had better fit than equation (2): �2/df=1.16 
versus 1.50 but a lower association of  86.7%.  
 
 A logit equation by itself does not provide a 
discriminant of quality; a criterion for deciding whether a 
module is fault prone or not fault prone is required 
[KHO97]. We used the inverse of the K-S distance 
[SCH00]. This was accomplished by finding the value PC 
of Pi, where there was the maximum distance between the 
cumulative distribution function (CDF) for drcount=0 
versus drcount>0 (i.e., the critical value). These values 
were PC=.00014828 for equation (2) and PC=.00012605 
for equation (3). An example is shown for the four metric 
case in Figure 1, and Figure 2 shows the plot of drcount 
versus Pi; both figures indicate the critical value of Pi. 
When these discriminants were used to classify quality for 
Build 1, the results in Table 2 were obtained.  
 
The module counts given by equation (1) can be applied 
to the LRFs by replacing Mij with Pi and MCj with PC.  
 
The module counts then have the following 
interpretations: 
 
C11 = The count of modules in the build that are high 
quality and Pi does not exceed its critical value. 
 
C12 = The count of modules in the build that are high 
quality and Pi exceeds its critical value. 
 
C21 = The count of modules in the build that are low 
quality and Pi does not exceed its critical value. 
 
C22 = The count of modules in the build that are low 
quality and Pi exceeds its critical value. 
 
3.4 Misclassification 
 

We computed the degree of misclassification by 
noting that ideally C11 = N1 = n1, the number of accepted 
modules and the number of high quality modules, 
respectively, C12 = 0, C21 = 0, and C22 = N2 = n2, the 
number of rejected modules and the number of low 
quality modules, respectively. The extent that this is not 
the case is estimated by Type 1 misclassifications (i.e., the 
module has Low Quality and the metrics "say" it has High 
Quality) and Type 2 misclassifications (i.e., the module 
has High Quality and the metrics "say" it has Low 
Quality). Thus, we define the following measures of 



  

misclassification, where n is the number of modules in the 
build: 
 
Proportion of Type 1: p1 = C21/n     (4)             (4) I=(C12+C22)/n         (9)  
 
Proportion of Type 2: p2 = C12/n     (5)           (5) 3.7 Tradeoff between Quality and Inspection 
3.5 Quality 
 

First, we estimated the ability of the metrics to 
correctly classify quality, given that the quality is known 
to be low: 
 
LQC: Proportion of low quality modules (e.g., drcount>0) 
correctly classified = C22/n2         (6) 
 
Second, we estimated the ability of the metrics to 
correctly classify quality, given that the BDF or LRF has 
classified modules as acceptable. This is done by 
summing quality factor in the accept category to produce 
Remaining Factor, RF (e.g., remaining quality factor 
drcount or number of DRs that were not caught when 
classifying quality), given by equation (7).  

FOR
n

RF =   (( > 0) ( MC1)... ( )... ( ))F MCF M M Mi i i1 ij imj
i=1
� � � � � � �MCm  

for j = 1,...,m            (7)  
 
This is the sum of Fi (e.g., drcount) on modules 
incorrectly classified as high quality because (Fi>FC)� 
(Mij��MCj) for these modules. Again, equation (7) can 
be applied to the LRFs by replacing Mij with Pi and MCj 
with PC.  
 
 We estimated the Quality (Q) of the build by equation 
(8), where TF is the total Fi for the build.  
 
Q = (TF-RF)/TF         (8)  
  
 Assuming that the problems reported in the DRs of the 
rejected modules are corrected, equations (6) and (8) give 
the quality that would have been achieved if the 
discriminant functions had been used in the design phase 
of Build 1 to reject low quality modules. Furthermore, 
these equations predict the quality that would be achieved 
on Build 2.    
 
3.6 Inspection 
 

We were interested in weighing the cost of inspection 
requirements (i.e., percent of modules rejected and 
subjected to detailed inspection) against the quality that is 
achieved, for various BDFs and LRFs. We estimated 
inspection requirements by noting that all modules that 
are rejected must be inspected; this is the count C12+C22. 

Thus, the proportion of modules that must be inspected is 
given by: 
 

 

 
 Note that equation (8) classifies quality according to 
correctness of drcount classification, whereas equation (6)   
classifies quality according to correctness of module 
classification. Therefore, it is appropriate to evaluate the 
effectiveness of a discrimant with two types of  
quality/inspection ratio, as in equations (10) and (11), 
respectively. 
 
QIR = Q/I.            (10)
  
LIR = LQC/I          (11)    
  
For a safety critical system, it would be appropriate to 
emphasize quality, using Q and LQC as the criteria; for a 
commercial system, the quality/inspection ratios might be 
more appropriate. However, we caution that a policy that 
trades quality for decreased costs during development 
could be short sighted. The costs of customer ill will and 
the cost of correcting problems could outweigh reductions 
in development cost. The results of computing equations 
(4)-(6) and (8)-(11) are shown for BDFs and LRFs for 
four and six metrics in Table 2 for Build 1.  

  
4. Comparison of BDFs with LRFs 
 
4.1 Validation Predictions  
  
 Table 2 provides a comparison of the ability of BDFs 
and LRFs to classify quality and the inspection cost that 
would be incurred in achieving this quality during the 
validation activity using Build 1. We see that BDFs are 
superior quality classifiers but have a higher inspection 
cost and lower quality/inspection ratios. Given these 
results, it occurred to us that combining a BDF with a 
LRF would yield even higher quality and lower inspection 
cost than either one used alone. In order to achieve this 
goal, we used the following modified BDFs that form the 
union of the original BDF and the LRF conditions for 
accepted and rejected modules, respectively:  
((Mi1≤MC1)… �(Mij≤MCj)…�(Mim≤MCm))�(Pi≤PC) 
((Mi1>MC1)…� (Mij>MCj)… � (Mim>MCm) )�(Pi>PC). 
 
 Using the BDF as the baseline, this approach permits 
the LRF to accept a certain number of high quality 
modules that were rejected by the BDF and to reject a 
certain number of low quality modules that were accepted 
by the BDF. The results are shown in the last row of 



  

Table 2 for four metrics, where the quality classification 
has improved. This approach would be appropriate for a 
safety critical system but might not be worth the 
additional cost of analysis for a commercial system.  
 
4.2 Application Results 
 
 Table 3 shows the results obtained by applying the 
BDFs and LRFs validated in Build 1 to Build 2. The 
critical values of BDFs and LRFs, MCj and PC, 
respectively, obtained from Build 1, were used with the 
metrics Mij of Build 2 during its design phase to accept 
modules as not fault prone or to reject modules as fault 
prone. This was accomplished  in the absence of drcount 
data. This was the case because in the actual application 
of the validated BDFs and LRFs, complete drcount data 
would not be available until the end of the test phase of 
Build 2. The major point of validation is to develop 
discriminant functions that can predict quality and 
inspection cost of the application product sufficiently 
early to detect and correct problems when the cost of 
correction is relatively low. However, we retrospectively 
analyzed the accuracy of prediction by using the critical 
values from Build 1 and the metrics data and drcount 
from Build 2 and recomputed equations (1)– (11).  
 
 We see in Table 3 that the quality achieved by Build 2 
BDFs and LRFs is slightly higher but the cost of 
inspection is higher (i.e., more rejected modules) than that 
predicted during Build 1. Such an outcome would be 
favorable for safety critical systems but might be 
considered too costly for commercial systems. As in the 
case of Build 1, improved quality is obtained over either 
the BDF or LRF alone, by combining the two functions. 
Compared to the predictions of Build 1, the quality 
achieved is slightly lower than that predicted in Build 1 
and the cost of inspection is higher. 

 
5. Ability of LRFs to Rank Quality 
 
5.1 Validation Predictions 
 
 We tested the ability of  the LRFs to rank quality (i.e., 
the degree of association between Pi and drcount) during 
the validation activity using Build 1. We did this 
evaluation by using the Mann-Whitney test [CON71]. We 
used this test to do a two-sample rank test for the 
difference between the population medians of Pi and 
drcount, where H0: medians of Pi and drcount are equal 
and H1: medians are not equal. The results are shown in 
Table 4, which indicates there is not a statistically 
significant difference between the medians of Pi and 
drcount at the indicated for both the four and six metric 
LRFs. We performed an additional analysis to determine 

the percentage of drcount corresponding to the highest 
and lowest 100 ranks of Pi, using Build 1. The predictions 
are shown in Table 4 for the four and six metric cases for 
Build 1. Figure 3 shows drcount versus the rank of  Pi for 
the four metric LRF for Build 1.  
 

The purpose of this analysis was to establish a 
predictor threshold (i.e., highest 100 ranks of Pi) of the 
lowest quality modules in the Application product (Build 
2). That is, after calculating Pi for Build 2, ranking them 
and determining the 100 highest rank threshold, all 
modules within the 100 highest rank range were identified 
as highly fault prone. This was accomplished in the 
absence of drcount data for Build 2. Similarly, the 100 
lowest ranks of Pi were used to establish the threshold for 
modules that are not highly fault prone 
 
5.2 Application Results 
 
 The four metric and six metric LRFs on Build 2 failed 
the Mann-Whitney test (i.e., relatively large  ��), as 
shown in Table 4. However, we made a retrospective 
analysis of Build 2, using the quality ranking thresholds 
identified in Build 1 and the drcount of Build 2. The 
analysis of the highest and lowest 100 ranks for both the 
four and six metric cases indicates a close correspondence 
between predictions and results, as shown in Table 4. 
Figure 4 shows drcount versus the rank of  Pi for the four 
metric LRF for Build 2. 
 
6. Conclusions 

 
 Referring to the research questions we posed in the 
Introduction, we arrive at the following conclusions, 
based on the analysis and results documented herein: 
 
1) What misclassification and inspection rates could be 
obtained by using logistic regression? We found that for 
the same software system and using the same set of 
metrics, BDFs were still superior to LRFs for quality 
discrimination.  
 
2) Would the LRFs provide additional information about 
the quality of individual modules? We found that LRFs 
used in isolation were of limited value. However, when 
combined with BDFs they provided a marginal 
improvement in quality discrimination for low quality 
modules. This is the case because the quality 
discrimination ability of BDFs is already high. However, 
when LRFs are added, inspection cost is reduced from 
that incurred when BDFs are used alone. We consider this 
a significant finding in terms of providing an accurate 
quality predictor (1.25% error; Q=98.75% for BDF∨LRF 
in Table 3) for safety critical systems at reasonable cost 



  

(relatively high values of QIR and LIR for BDF∨LRF in 
Table 3). This is the lowest prediction error rate we have 
found in the literature. 
 
3) Would the array of the number of discrepancy reports 
(reports of deviations between requirements and 
implementation) written against a module (drcount) rank 
in approximately the same order as the array of Pi or logit 
(Pi), where Pi is the probability of drcount>0? We found 
that the ranking of Pi provided accurate thresholds for 
identifying both low and high quality modules. However, 
the statistical test of difference in ranks between Pi and 
drcount yielded mixed results. 
 
 The method we developed for determining the critical 
value of LRFs, using the inverse of the Kolmogorov-
Smirnov (K-S) distance, provided good balance between 
quality and inspection cost. 
  
 We are confident about the ability of BDFs to 
consistently provide high accuracy quality classification 
for the Shuttle software because prior studies involved 
three builds and four subsets of these builds, where the 
validated BDFs yielded high accuracy (approximately 3% 
error) across builds without revalidating [SCH00, 
SCH100]. However, although 2,244 modules were used in 
the current study, the analysis to date on LRFs involved 
only two builds. The results are encouraging but more 
builds should be analyzed to increase confidence in the 
results.  The methods we have presented are general and 
not particular to the Shuttle. Thus, the methods should be 
applicable to other domains. However, the metric set, 
critical values, and numerical results would in general 
differ from those used for the Shuttle. 
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Table 1: Kolmogorov-Smirnov Distance for drcount=0 vs. drcount>0 
Validation: Build 1 (n=1397 modules) 

 
 

Metric 
(symbol) 

Definition 
(counts per module) 

 
Critical 
Value 

 
Distance 

 
α 

 
Rank 

 
prologue size (C) change history line count in 

module listing 
63 0.592 0.005 1 

 
statements (S) executable statement count 

 
27 

 
0.505 

 
0.005 

 
2 

 
eta2 (E2) unique operand count 

 
45 

 
0.472 

 
0.005 

 
3 

loc (L) non-commented lines of code 
count   

29 0.462 0.005 4 

 
eta1 (E1) unique operator count 

 
9 

 
0.430 

 
0.005 5 

 
nodes (N) node count 

(in control graph) 
 

17 
 

0.427 
 

0.005 
 

6 

  
 

Table 2: BDF – LRF Comparison, Validation Predictions (Build 1, n=1397 modules) 
Method p1 (%) p2 (%) LQC (%) Q (%) I (%) QIR LIR 

 Metrics        
BDF C, S, E2, L 2.00 29.35 95.14 98.22 68.58 1.43 1.38 
BDF C, S, E2, L, E1, N 1.43 34.93 96.53 98.76 74.73 1.32 1.29 
LRF C, S, E2, L 5.25 18.33 87.19 94.73 54.06 1.75 1.61 
LRF C, S, E2, L, E1, N 4.02 21.68 90.21 94.57 58.72 1.61 1.54 

BDF�LRF  
C, S, E2, L 

 
0.72 

 
17.32 

 
98.26 

 
99.53 

 
57.84 

 
1.72 

 
1.70 

 
Table 3: BDF – LRF Comparison, Application Results (Build 2, n=846 modules) 

Method p1 (%) p2 (%) LQC (%) Q (%) I (%) QIR LIR 
 Metrics        

BDF C, S, E2, L 1.30 36.29 97.37 98.43 84.40 1.33 1.32 
BDF C, S, E2, L, E1, N 0.59 41.84 98.80 99.00 90.66 1.09 1.09 
LRF C, S, E2, L 3.07 27.66 93.69 97.19 73.90 1.32 1.27 
LRF C, S, E2, L, E1, N 2.73 30.69 94.47 97.33 77.71 1.25 1.22 

BDF�LRF  
C, S, E2, L 

 
0.95 

 
23.88 

 
98.09 

 
98.75 

 
72.34 

 
1.37 

 
1.36 

 
Table 4: LRF Quality Rankings, Validation Predictions (Build 1, n=1397 modules) vs.  

Application Results (Build 2, n=846 modules) 
 Metrics Mann Whitney � High 100 Ranks 

 drcount (%) 
Low 100 Ranks 

 drcount (%) 
Prediction C, S, E2, L .0000 40.93 .16 

Result C, S, E2, L .5545 46.99 .67 
Prediction C, S, E2, L, E1, N .0000 43.51 1.59 

Result C, S, E2, L, E1, N .6434 47.61 1.02 
 



  

Figure 1: CDFs vs. Pi, Logistic Regression (4 Metrics, Build 1) 
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Figure 2: drcount vs. Pi, Logistic Regression (4 Metrics, Build 1)
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Figure 3: drcount vs. Rank of Pi, Logistic Regression (4 Metrics, Build 1)

0

10

20

30

40

0 200 400 600 800 1000 1200 1400

Rank of Pi

D
R

s p
er

 M
od

ul
e

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8007006005004003002001000

30

20

10

0

Rank of Pi

DR
s p

er
 M

od
ule

Figure 4: drcount vs Rank of Pi, Logistic Regression (4 Metrics, Build 2)
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